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It is shown that the real one-dimensional irreducible representations of a crystallographic point group 
induce the magnetic symmetry groups associated with the point group and also give the number of 
independent non-vanishing constants required to describe any magnetic property for the induced mag- 
netic symmetry groups. 

1. Introduction 

The crystallographic point groups describe the spatial 
symmetry operations like rotations and rotation-re- 
flexions by which a crystal is brought into coincidence 
with itself. By the application of an ordinary symmetry 
operation on an arrangement of atoms in a point 
group, although the geometrical structure may be 
brought into coincidence with itself, it may be that 
the orientations of some or all of the atomic magnetic 
moments (spins) are reversed. In such a case a further 
reversal of the affected spins must follow the usual 
symmetry operation in order to bring the geometrical 
structure, together with the spins, into complete coin- 
cidence with itself. The time reversal operation, N, has 
been introduced in this context to account for the 
reversal of the spins. The need for generalization of 
the concept of symmetry operations was realized long 
ago by Shubnikov (1951), Landau & Lifshitz (1960) 
and several others to explain the magnetic properties 
of crystals. The introduction of the new symmetry 
operation N increases the number of the point groups 
from 32 to 122. These 122 point groups can be clas- 
sified broadly into two categories. They are (i) the 32 
grey groups containing ~/ explicitly and (ii) the 90 
magnetic symmetry groups. The 32 conventional crys- 
tallographic point groups together with the 58 bi- 
coloured magnetic point groups constitute the 90 mag- 
netic symmetry groups. The magnetic symmetry groups 
have been derived in a variety of ways by Shubnikov 
(1951), Tavger & Zaitsev (1956), Hamermesh (1962), 

Tinkham (1964) and Bhagavantam & Pantulu (1964). 
Recently Koptsik (1966) also discussed the magnetic 
symmetry groups in connexion with the description 
of magnetic structures of crystals on the basis of Lan- 
dau's theory of the second order phase transitions. 
In this paper it is proposed to derive the magnetic sym- 
metry groups by a more elegant method, based on the 
representation theory of groups. The method presented 
here emphasizes the significance of the physical con- 
stants occurring in the alternating representations of the 
conventional point groups, and this is explained in 
§4. 

2. Description of the method 

The magnetic symmetry groups have been constructed 
(Hamermesh, 1962) by selecting possible subgroups of 
index 2 from the 32 point groups. A subgroup H of 
index 2 of a group G is necessarily a self-con- 
jugate subgroup of G. Then G can be written as G =  
H+A~H, where At is any element that belongs to 
G - H .  The co-sets H and AiH form the factor group 
G/H. Constructing the set M(a)H of elements asso- 
ciated with the group G defined by the relation 
M(G)H=H+,_~AIH, it can be seen that MtG)H forms a 
group, which is called the magnetic group of G with 
respect to H. Thus in the construction of the magnetic 
groups of G, one has A2H = H so that the characters 
of A~H in the factor group G/H are + 1. Hence the 
representations of A~H in the factor group are real and 
one-dimensional. Given a subgroup H of index 2 of G, 
there corresponds uniquely to it a real one-dimensional 
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irreducible representation of the factor group G/H in 
which the elements H and AiH respectively have the 
characters + 1 and - 1 .  But the irreducible represen- 
tations of the factor group G/H induce the irreducible 
representations of G. There will be as many non-total 
symmetric real one-dimensional irreducible represen- 
tations (alternating representations) in G as the number 
of possible subgroups of index 2 of G. In fact, a one 
to one correspondence exists (Indenbom, 1959; Niggli, 
1959; Bertaut, 1968) between the various subgroups of 
index 2 of a group G and the alternating representa- 
tions of G, as explained below. If all the elements which 
are represented by the character + 1 in an alternating 
representation FH of G are taken, they form a sub- 
group H of index 2 of G corresponding to the alter- 
nating representation FH. Therefore from the alternat- 
ing representations FH of G, one can build up the mag- 
netic groups M(G)H associated with G. The symmetry 
operation Ai is of even order (Hamermesh, 1962) and 
the one-dimensional irreducible representations of G 
with imaginary characters need not be considered so 
far as the derivation of the magnetic groups of G is 
concerned, since A 2 = E (identity). 

If the group G is taken as one of the 32 crystallo- 
graphic point groups, then each one of the real one- 
dimensional irreducible representations of G induces 
a magnetic symmetry group corresponding to G. In 
particular the total symmetric irreducible representa- 
tion of G induces a magnetic symmetry group of G, 
wherein all the spins will be left invariant by all the 
spatial symmetry operations. These groups, 32 in num- 
ber, are called the single coloured or colourless groups 
(Bhagavantam, 1966) and are indistinguishable from 
the 32 crystallographic point groups. Each one of the 
alternating representations of G induces a double 
coloured magnetic symmetry group, also known as a 
magnetic variant of G (Bhagavantam & Pantulu, 1964). 
If some of the subgroups H of index 2 of a group G 
are to be regarded as indistinguishable from physical 
considerations, the corresponding alternating represen- 
tations F~/ of G should be regarded as magnetically 
equivalent (or simply referred to as equivalent here- 
after) and the induced magnetic variants of G should 
be regarded as identical. Adopting the procedure de- 
scribed here, the distinct magnetic variants of the 32 
crystallographic point groups have been derived in the 
following section. 

3. Enumeration of the magnetic variants 

The distinct magnetic variants induced by the non- 
equivalent alternating representations of the 32 point 
groups have been enumerated and described below in 
terms of the inducing irreducible representations which 
are given in brackets against the point groups. On 
account of the possibility of obtaining identical induced 
magnetic variants of a point group G, the inducing 
irreducible representations of G may be specified by 
any one of the equivalent alternating representations. 

Tisza's (1933) notation* for the description of the real 
one-dimensional irreducible representations of the 32 
point groups is adopted from the text book of Herzberg 
(1945): 

]'(Au); m(A"); 2(B); 2/m(Bu, Au, Bg); 2mm(Ba, Az); 
222(B3); mmm(Biu, Au, Big); 4(B); 4(B); 4/m(Bu, Au, 
Bg); 4mm(A2, B1); 42m(B1, B2, A2); 422(Az, B1); 
4/mmm(B2u, A2u, Azg, AlU, Bw); 3(Bu); 3m(A2); 32(A2); 
3m(Azg, Azu, Aau); 6(A"); 6(B); 6/m(Au, Bu, Bg); 
-6m2(A~2, A 2, A';) ; 6mm(A2, B1); 622(A2, Bi); 6/mmm(A2u, 
Azg, Aau, Bxu, B1o); m3(Au); 43m(A2); 432(A2) and 
m3m(Aau, Azg, Azu) . 

In this way, the 58 magnetic variants of the 32 point 
groups are obtained. In the above list the point groups 
1, 3 and 23 have been omitted as they do not give rise 
to any magnetic variants. As there can be at most 8 
real one-dimensional irreducible representations in 
some of the 32 point groups, the maximum number of 
magnetic variants that can correspond to such point 
groups can only be 7. But on account of the equi- 
valence (Bertaut, 1968) among the induced magnetic 
variants, this maximum number has not been realized 
here even in those point groups that contain 8 real 
one-dimensional irreducible representations. 

4. Magnetic constants of the magnetic variants 

The advantage of this method can be appreciated best 
in computing, in a very elegant way, the number of 
constants required to specify a magnetic property for 
the magnetic variants of the point groups. The usual 
method of enumerating the number of non-vanishing 
independent constants necessary to describe a physical 
(or magnetic) property of a crystal consists in obtaining 
that number coming under the total symmetric irre- 
ducible representation of the point group G of order 
N of the crystal from the following established formula 
(Bhagavantam & Venkatarayudu, 1962): 

nt= 1IN Z hlozp(R)zi(R) , (1) 
P 

where Z'p(R) is the character derived for the physical 
property, hp is the number of elements in the conjugate 
class p of G and zI(R) is the character of the symmetry 
element R in the ith irreducible representation of G. 
In equation (1), n~ represents the number of physical 
constants appearing against the representation i of G. 

It will now be shown that the method of computing 
the number of independent constants required to de- 
scribe a magnetic property for a magnetic variant cor- 
responding to a point group G is the same as that of 
determining that number against that alternating re- 

* The standard notation employed in molecular spectro- 
scopy for the irreducible representations of the 32 point 
groups is adhered to: thus A or B always denote one-dimen- 
sional irreducible representations. Suffixes g or u distinguish 
representations which are even or odd with respect to inversion, 
while a single or a double prime is used to distinguish those 
which are even or odd with respect to a plane of symmetry. 
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presentation of G which induces the magnetic variant. 
The basic idea in the above statement will now be 
explained through an illustration. Consider the point 
group 2mm. The character table of the point group 
is given below. 

2 m m  E C 2 O" v O" v 

A1 1 1 1 1 
A2 1 1 - 1  - 1  
B1 1 - 1 1 - 1  
Bz 1 - 1  - 1  1 

It has been mentioned in the previous section that the 
irreducible representations Bx and A2 of the point group 
2ram induce the magnetic variants 2ram and 2mm re- 
spectively. Take the magnetic variant 2ram; the number 
of constants needed to describe a magnetic property 
for the magnetic variant 2ram can be obtained from 
(1) by taking D(R) = 1 for all R, which is characteristic 
of the total symmetric irreducible representation of the 
magnetic variant. Since the order of a magnetic variant 
and the orders of its various conjugate classes asso- 
ciated with a point group G will be the same as the 
corresponding orders of G, and a complementary sym- 
metry operation introduced by Zheludev (1960) re- 
verses the character of a physical property (Indenbom, 
1960), it follows that the number of constants n(m • v)T 
in respect of a magnetic property coming under the 
total symmetric irreducible representation (7") of the 
magnetic variant (m.  v) 2ram, for which h v = 1 for all 
p and N = 4 ,  is, from (1), given by: 

n(r,,, v)T=¼ S z;(R)  
p 

= ¼[z ' (e )  + z'(C2) + z'(aO + z'(~;)]*  

=¼[z'(E)+z'(C2)-Z'( trv)-Z'( trO] . (2) 

But 1, 1, - 1  and - 1  are respectively the characters 
of the symmetry operations E, C2, try and tr~ pertaining 
to the irreducible representation ,42, which induces the 
magnetic variant 2ram, of the point group 2mm. There- 
fore the value of ntm • v)T given by (2) can be expressed 
as: 

ntm. v)T=¼[z'(E)x 1 +z'(C2) x 1 +Z'(av) x ( -  1) 
+Z'(a~,) x ( -  1)] 

=¼[ X z;(R)ZrA2)(R)] 
p 

1 
= -N ,S hvX'p(R)ztA~)(R ) . (3) 

p 

It is easy to recognize from (3) and (1) that n(m. v)T = 
n(a2), where n(A2) represents the number of non-van- 
ishing independent magnetic constants coming under 
the irreducible representation A2 of the point group 
2ram. This is a general result which can in the same 
way be easily established in respect of any other mag- 
netic variant of any other group. The converse of the 

* The complementary symmetry operations ~trv and ~trv' 
contained in the magnetic variant 2ram are denoted by tr_.£ 
and try'. 

above result may also be inferred from the one-to-one 
correspondence between the magnetic variants of a 
point group G and the alternating representations of G. 
Hence it may be said that the number of constants 
required for the description of a magnetic property in 
respect of a magnetic variant of a G can be directly 
obtained from that alternating representation of G 
which induces the magnetic variant. In other words, 
a physical significance for the number of constants of 
a magnetic property appearing against the alternating 
representations of the 32 point groups now emerges 
when the magnetic variants of a point group G are 
regarded as being induced by the alternating represen- 
tations of G. A similar interpretation can be extended 
to other physical properties. 

5. Summary 

In the present paper, it is shown that the real one- 
dimensional irreducible representations of a point 
group induce the magnetic symmetry groups asso- 
ciated with the point group and also give the number 
of constants needed to describe any magnetic property 
for the magnetic symmetry groups. Work on the deri- 
vation of magnetic space groups will be dealt with in 
a separate communication. 

The authors wish to express their grateful thanks to 
Professor T. Venkatarayudu for the stimulating discus- 
sions which they had with him on the problem. The 
authors' thanks are also due to the referee for his 
valuable suggestions in the presentation of the paper. 
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